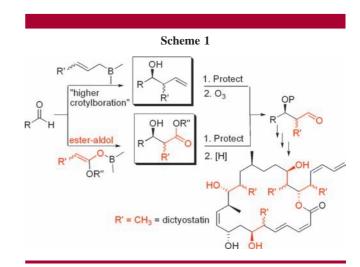
2009 Vol. 11, No. 7 1467–1470

## Asymmetric Aldol Reaction with Diisopinocampheyl Enolborinates of Propionates

## P. Veeraraghavan Ramachandran\* and Debarshi Pratihar

Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084

chandran@purdue.edu


Received December 10, 2008

## **ABSTRACT**

A convenient and general, *reagent-controlled*, diastereo- and enantioselective aldol reaction of diisopinocampheylboron enolates of esters, followed by reduction, has been developed as an alternative to crotylboration-ozonolysis. This protocol was then exploited for the double diastereoselective synthesis of the C11—C17 subunit of (—)-dictyostatin.

Pinane-mediated asymmetric crotylboration<sup>1</sup> and enolboration-aldolization<sup>2</sup> are highly diastereo- and enantioselective carbon—carbon bond-forming reactions routinely employed for the syntheses of complex molecules bearing  $\beta$ -methyl hydroxyl units. Although repetitive crotylboration<sup>3</sup> and enolboration-aldolization of ketones<sup>2</sup> and amides<sup>4</sup> have been exploited for polyketide syntheses, the potential application of the enolboration-aldolization of esters remains relatively unexplored. In continuation of our project on the total synthesis of potent tubulin polymerizing anticancer agent (—)-dictyostatin (Scheme 1),<sup>5</sup> we were confronted with the need for sufficient quantities of the subunits for a practical

<sup>(4) (</sup>a) Evans, D. A.; Takacs, J. M.; McGee, L. R.; Ennis, M. D.; Mathre, D. J.; Bartoli, J. *Pure Appl. Chem.* **1981**, *53*, 1109. (b) Evans, D. A.; Bartroli, J.; Shih, T. L. *J. Am. Chem. Soc.* **1981**, *103*, 2127. (c) Oppolzer, W.; Blagg, J.; Rodriguez, I.; Walther, E. *J. Am. Chem. Soc.* **1990**, *112*, 2767.



synthesis of its analogs and homologues. Our initial approach using Brown's "higher crotylboration" was inadequate because of the cumbersome preparation of the expensive starting allenes. Our ensuing investigations were channelled

<sup>(1)</sup> Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919. (2) (a) Cowden, C. J.; Paterson, I. Organic Reactions; John Wiley & Sons: New York, 1997; Vol. 51, pp 1–209. (b) Paterson, I.; Wallace, D. J.; Velazquez, S. M. Tetrahedron Lett. 1994, 35, 9083. (c) Paterson, I.; Lister, M. A. Tetrahedron Lett. 1988, 29, 585. (d) Evans, D. A.; Vogel, E.; Nelson, J. V. J. Am. Chem. Soc. 1979, 101, 6120.

<sup>(3)</sup> For a review on crotylboration for synthesis, see: Ramachandran, P. V. *Aldrichimica Acta* **2002**, *34*, 23.

toward a more efficient diisopinocampheylboron triflate (Ipc<sub>2</sub>BOTf, **2**)-mediated aldol reaction of esters.

Very few reports on the boron-mediated aldol reaction of esters have appeared in the literature since the description of (E)-enolborinates of thioesters by Masamune three decades ago. This could be attributed to the report of a failed attempt to enolize methyl propionate using dibutylboron triflate.8 Successful B-bromodiazaborolidine and B-iododicyclohexylborane-mediated aldol reaction of esters were later reported by Corey<sup>9</sup> and Brown,<sup>10</sup> respectively.<sup>11</sup> A decade ago Masamune and Abiko amended the literature<sup>12</sup> with the dialkylboron triflate-mediated enolization of esters, followed by aldolization of aldehydes, which led to a substratecontrolled asymmetric aldol reaction of norephedrine-derived ester enolates. 12b-d They obtained either syn- or anti-αmethyl- $\beta$ -hydroxy esters, depending on the alkyl group on boron. 12d Herein, we report a convenient and general, reagent-controlled, diastereo- and enantioselective aldol reaction of diisopinocampheylboron enolates of esters (Scheme 2) and its application to the double diastereoselective synthesis of the C11–C17 subunit of (–)-dictyostatin.

With prior knowledge that the stereochemical course of the ester-aldol reaction can be controlled by choosing appropriate reagents and amines, <sup>13</sup> the enolization of methyl propionate (1a) with diisopinocampheylboron triflate (2), prepared from diisopinocampheylborane and triflic acid, <sup>2a</sup> and subsequent aldolization of cinnamaldehyde (4a)<sup>14</sup> was optimized to achieve maximum diastereo- and enantioselec-

- (6) Brown, H. C.; Narla, G. Tetrahedron Lett. 1997, 38, 219.
- (7) (a) Hirama, M.; Masamune, S. Tetrahedron Lett. 1979, 2225.
- (8) Evans, D. A.; Nelson, J. V.; Vogel, E.; Taber, T. R. J. Am. Chem. Soc. 1981, 103, 3099.

tivity. The enolization of 1a with (-)-2 in the presence of  ${}^{1}\text{Pr}_{2}\text{NEt}$  at -78 °C for 4 h and aldolization of 4a at -78 °C for 4 h achieved only a 3:2 mixture of syn- (major) and anti-products (entry 1, Table 1). The ratio of the syn-product could be increased to 6:1 by replacing  ${}^{1}\text{Pr}_{2}\text{NEt}$  with  $\text{Et}_{3}\text{N}$ , under similar conditions. Subsequently, a change in the enolization temperature to 0 °C for 5 h dramatically increased the syn-diastereomer ratio to 97:3.

The optimal conditions were finally established by commencing the enolate formation at -78 °C for 30 min and then warming to 0 °C for 4 h, followed by aldolization at -78 °C, when the hydroxy ester was obtained in 85% yields with a 99:1 diastereoselectivity and 98:2 enantioselectivity. Notably, the enolization temperature influences the diastereoselectivity, whereas the aldolization conditions have little or no effect.

**Scheme 3.** Effect of Ester Group on Stereo- and Enantioselectivity

OBIPC2 Ph 4a H OR' 
$$C_1$$
 CH2Cl2  $C_2$  CH2Cl2  $C_3$  OR'  $C_4$  OR'  $C_5$  OR'

Under these standardized conditions, we examined the stereoselection by varying the alkyl group of the propionates (1b−e) and identified methyl propionate (1a) as the ester of choice for the preparation of syn-aldols. Although the enantioselectivity remained high, a gradual decrease of syndiastereoselectivity was observed for ethyl, benzyl, and isopropyl esters (1b-d). The enolization was very slow for tert-butyl propionate (1e) (Scheme 3), and aldolization provided the anti-aldol (9a) essentially exclusively in 50% yields with 60% ee, much higher than typically observed for the anti-aldols obtained with diisopinocampheyl boron enolates of ketones.<sup>2a</sup> The reversal of diastereoselection is similar to what has been noted earlier by Corey, Brown, and Masamune. 9-10,12 Remarkably, when Et<sub>3</sub>N was replaced with <sup>i</sup>Pr<sub>2</sub>NEt, the anti-selectivity increased from 1:4 to 95:5 for 1d and the exclusive anti-aldol product was achieved with **1e** (Scheme 4).

These processes were then extended to a diverse set of aldehydes. Under the optimized conditions for *syn*-aldols

Org. Lett., Vol. 11, No. 7, 2009

<sup>(5) (</sup>a) Ramachandran, P. V.; Srivastava, A.; Hazra, D. *Org. Lett.* **2007**, 9, 157. For other total syntheses of dictyostatin, see: (b) Paterson, I.; Britton, R.; Delgado, O.; Meyer, A.; Poullennec, K. G. *Angew. Chem., Int. Ed.* **2004**, 43, 4629. (c) Shin, Y.; Fournier, J.; Fukui, Y.; Bruckner, A. M.; Curran, D. P. *Angew. Chem., Int. Ed.* **2004**, 43, 4633. (d) O'Neil, G. W.; Phillips, A. J. *J. Am. Chem. Soc.* **2006**, 128, 5340.

<sup>(9) (</sup>a) Corey, E. J.; Imwinkelried, R.; Pikul, S.; Xiang, Y. B. *J. Am. Chem. Soc.* **1989**, *111*, 5493. (b) Corey, E. J.; Kim, S. S. *J. Am. Chem. Soc.* **1990**, *112*, 4976.

<sup>(10) (</sup>a) Brown, H. C.; Dhar, R. K.; Ganesan, K.; Singaram, B. *J. Org. Chem.* **1992**, *57*, 499. (b) Brown, H. C.; Dhar, R. K. *J. Org. Chem.* **1992**, *57*, 2716. (c) Ganesan, K.; Brown, H. C. *J. Org. Chem.* **1994**, *59*, 2336.

<sup>(11)</sup> Boron-mediated aldol reactions of glycolates have been reported. (a) Andrus, M. B.; Sekhar, B. B. V. S.; Meredith, E. L.; Dalley, N. K. *Org. Lett.* **2000**, *2*, 3035. (b) Lang, F.; Zewge, D.; Song, Z. J.; Biba, M.; Dormer, P.; Tschaen, D.; Volante, R. P.; Reider, P. J. *Tetrahedron Lett.* **2003**, *44*, 5285.

<sup>(12) (</sup>a) Abiko, A.; Liu, J.-F.; Masamune, S. *J. Org. Chem.* **1996**, *61*, 2590. (b) Abiko, A.; Liu, J.-F.; Masamune, S. *J. Am. Chem. Soc.* **1997**, *119*, 2586. (c) Abiko, A.; Liu, J.-F.; Buske, D. C.; Moriyama, S.; Masamune, S. *J. Am. Chem. Soc.* **1999**, *121*, 7168. (d) Inoue, T.; Liu, J.-F.; Buske, D. C.; Abiko, A. *J. Org. Chem.* **2002**, *67*, 5250.

<sup>(13)</sup> Abiko, A.; Liu, J.-F. Acc. Chem. Res. 2004, 37, 387.

<sup>(14)</sup> Cinnamaldehyde (4a) was chosen because of the ease in the chromatographic separation of the product aldol.

Table 1. Optimization of Conditions for syn-Aldol Reaction

| enolization condition |                                   |                          |                            |           |              |                 |
|-----------------------|-----------------------------------|--------------------------|----------------------------|-----------|--------------|-----------------|
| entry                 | amine                             | temp                     | aldolization condition     | yield (%) | $syn:anti^a$ | $\mathrm{er}^b$ |
| 1                     | $^{i}\mathrm{Pr}_{2}\mathrm{NEt}$ | −78 °C, 4 h              | −78 °C, 4 h                | 55        | 60:40        | c               |
| 2                     | $\mathrm{Et_{3}N}$                | −78 °C, 4 h              | −78 °C, 4 h                | 72        | 85:15        | 96:4            |
| 3                     | $\mathrm{Et_{3}N}$                | −78 °C, 2 h; 0 °C, 3 h   | −78 °C, 5 h                | 65        | 87:13        | 96.5:3.5        |
| 4                     | $\mathrm{Et_{3}N}$                | −78 °C, 2 h; 0 °C, 3 h   | −78 °C, 5 h                | 69        | 89:11        | 96.5:3.5        |
| 5                     | $\mathrm{Et_{3}N}$                | −78 °C, 1 h; 0 °C, 1 h   | −78 °C, 2 h; rt, 8 h       | 57        | 90:10        | 96.5:3.5        |
| 6                     | $^{i}\mathrm{Pr}_{2}\mathrm{NEt}$ | −78 °C, 0.5 h; 0 °C, 4 h | −78 °C, 8 h                | 65        | 95:5         | 97:3            |
| 7                     | $^{i}\mathrm{Pr}_{2}\mathrm{NEt}$ | 0 °C, 5 h                | −78 °C, 2 h; rt, 8 h       | 70        | 97:3         | 96.5:3.5        |
| 8                     | $\mathbf{Et_3N}$                  | -78 °C, 0.5 h; 0 °C, 4 h | <b>−78</b> ° <b>C, 8 h</b> | 85        | 99:1         | 98:2            |

<sup>&</sup>lt;sup>a</sup> Determined from <sup>1</sup>H NMR analysis of the crude reaction mixture. <sup>b</sup> Enantiomeric ratio determined by <sup>19</sup>F NMR analysis of the Mosher ester derivative of the product. <sup>c</sup> Not determined.

Scheme 4. Optimization of Conditions for anti-Aldol Reaction

OBIpc<sub>2</sub>
OR'
$$\begin{array}{c}
(-)-2, \ ^{i}Pr_{2}NEt \\
CH_{2}Cl_{2} \\
-78 \ ^{\circ}C, 3 \ h
\end{array}$$
OBIpc<sub>2</sub>
OBIpc<sub>2</sub>
OR'
$$\begin{array}{c}
Ph \\
4a \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 8 \ h
\end{array}$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 9 \ h$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 9 \ h$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 9 \ h$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 9 \ h$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 9 \ h$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 9 \ h$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 9 \ h$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 9 \ h$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 9 \ h$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 9 \ h$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 9 \ h$$
OR'
$$\begin{array}{c}
Ph \\
-78 \ ^{\circ}C, 9 \ h$$
OR'
$$\begin{array}{c}
Ph$$

(Table 1, entry 8), the reactions of representative aromatic  $(4\mathbf{a}-\mathbf{d})$ , aliphatic  $(4\mathbf{f}-\mathbf{g})$ , and heterocyclic  $(4\mathbf{e})$  aldehydes proceeded with excellent diastereoselectivity (94-99%) and enantioselectivity (90-97%) for  $5\mathbf{a}-\mathbf{g}$ . An aldehyde bearing an acid-sensitive *tert*-butylsilyloxy group  $(4\mathbf{h})$ , entry 9) was also included, which provided 63% of the corresponding *syn*-aldol (2S,3R)- $5\mathbf{h}$  in 94:6 diastereo- and 95:5 enantioselectivity. The results are summarized in Table 2. A select series of aldehydes were converted to the *anti*-aldols, as summarized in Table 3.

Taking advantage of the natural availability of both antipodes of  $\alpha$ -pinene, the ester enolate E-**3a**, derived with the antipode of the reagent, (+)-**2**, was treated with benzaldehyde to provide the hydroxy ester 2R, 3R-**5b** (Table 2, entry 3) in similar de and ee. Comparison of the optical rotations of the enantiomers of **5b** with those reported confirmed the ee and the configurations. The stereochemistry of all other product aldols **5a**-h were assigned on the basis of analogy.

Pinene-derived reagents typically override the chirality of substrates in double diastereoselections. <sup>16</sup> A similar effect was observed in the case of the ester-aldol reaction of chiral aldehyde 11, derived from the Roche ester (10), with the antipodes of E-3a. The aldol products 12 were obtained in

**Table 2.** syn-Aldol Reaction of Ester Enolborinate<sup>a</sup>

| entry | RCHO | product                                    | yield,<br>% | dr <sup>c</sup> | er <sup>d</sup> |
|-------|------|--------------------------------------------|-------------|-----------------|-----------------|
| 1     | 4a   | Ph OMe 2S,3R-5a                            | 85          | 99:1            | 98:2            |
| 2     | 4b   | OMe 2S,3S-5b                               | 82          | 97:3            | 98:2            |
| 3°    | 4b   | OH O OMe                                   | 79          | 95:5            | 2:98            |
| 4     | 4c   | 2R,3R- <b>5b</b> OH O O <sub>2</sub> N OMe | 70          | 96:4            | 97:3            |
| 5     | 4d   | OMe OMe                                    | 72          | 95:5            | 96:4            |
| 6     | 4e   | OH O<br>OMe<br>2S,3S- <b>5</b> e           | 68          | 95:5            | 95:5            |
| 7     | 4f   | OH O OMe                                   | 75          | 98:2            | 99:1            |
| 8     | 4g   | OH O OMe                                   | 73          | 98:2            | 98:2            |
| 9     | 4h   | TBSO OH O OMe                              | 63          | 94:6            | 95:5            |

<sup>&</sup>lt;sup>a</sup> Reaction conditions: (-)-2 (1.3 mmol), prepared from (-)-Ipc<sub>2</sub>BH (from (+)- $\alpha$ -pinene) and trifluoromethanesulfonic acid, Et<sub>3</sub>N (2.2 mmol), and methyl propionate (1 mmol) were stirred at -78 °C for 30 min and at 0 °C for 4 h; aldehyde (0.94 mmol) was added at -78 °C, and the mixture was stirred for 8 h. Entry 4, stirred at rt for 5 h. <sup>b</sup> Isolated yield after column chromatography. <sup>c</sup> Determined from <sup>1</sup>H NMR analysis of the crude reaction mixture. <sup>d</sup> Determined via <sup>1</sup>H and <sup>19</sup>F NMR spectroscopy of the MTPA ester. <sup>e</sup> (+)-2 was used for the aldol reaction.

65% and 60% yields and in 98:2 and 95:5 diastereomeric ratios, respectively. The absolute stereochemistry of **12** was confirmed by converting the 2R, 3S, 4S-diastereomer to **15**, the C11-C17 subunit of (-)-dictyostatin (Scheme 5), as follows.

The secondary alcohol 2R,3S,4S-12 was protected as the TBS ether to 2S,3R,4S-13, followed by a borane reduction of the ester to the primary alcohol, 2S,3R,4S-14. Conversion

Org. Lett., Vol. 11, No. 7, 2009

<sup>(15)</sup> Heathcock, C. H.; White, C. T.; Morrison, J. J.; VanDerveer, D. J. Org. Chem. 1981, 46, 1296.

<sup>(16)</sup> Brown, H. C.; Ramachandran, P. V. J. Organomet. Chem. 1995, 500 1.

**Table 3.** anti-Aldol Reaction of Ester Enolborinate<sup>a</sup>

| entry | RCHO       | product                          | yield,<br>% | dr   | er <sup>d</sup> |
|-------|------------|----------------------------------|-------------|------|-----------------|
| 1     | 4a         | Ph O'Bu                          | 75          | 1:99 | 82:18           |
| 2     | 4b         | OH O<br>1<br>0'Bu<br>2R,3S-9b    | 80          | 1:99 | 81:19           |
| 3     | 4d         | OH O<br>O'Bu<br>2R,3S-9d         | 72          | 1:99 | 80:20           |
| 4     | 4f         | Ph O'Bu 2R,3R-9f                 | 61          | 1:99 | 80:20           |
| 5     | <b>4</b> g | OH O<br>O'Bu<br>2R,3R- <b>9g</b> | 70          | 2:98 | 83:17           |
| 6     | 4h         | TBSO OH O O'Bu                   | 70          | 1:99 | 75:25           |

<sup>&</sup>lt;sup>a</sup> Reaction Conditions: (−)-2 (1.3 mmol), <sup>i</sup>Pr<sub>2</sub>NEt (2.2 mmol), and *tert*-butyl propionate (1 mmol) were stirred at −78 °C for 3 h; aldehyde (0.94 mmol) was added at −78 °C, and the mixture was stirred for 8 h. <sup>b</sup> Isolated yield after column chromatography. <sup>c</sup> Determined from <sup>1</sup>H NMR of the crude reaction mixture. <sup>d</sup> Determined via <sup>1</sup>H and <sup>19</sup>F NMR spectroscopy of MTPA ester.

to the sulfone **15** was achieved via a Myers' alkylation, lithium amidoborohydride (LAB) reduction, Mitsunobu reaction, followed by MCPBA oxidation.<sup>5a</sup> The <sup>1</sup>H NMRs of both **14** and **15** were identical to those reported earlier by us.

In summary, we have described the first general asymmetric aldol reaction of disopinocampheylboron-mediated enolates of esters. We have also shown the utility of this protocol with the preparation of the C11–C17 subunit of (–)-dictyostatin. We believe that this sequential asymmetric

**Scheme 5.** Synthesis of C11–C17 Subunit of (–)-Dictyostatin

ester enolate aldol reaction-ester reduction will become a versatile and excellent approach, if not a superior alternative, to sequential crotylboration-ozonolysis. A second generation synthesis of (—)-dictyostatin and its trifluoromethyl analogs are underway and will be reported in due course.

**Acknowledgment.** We acknowledge the support from the Herbert C. Brown Center for Borane Research. We sincerely thank Mr. Pravin Gagare, Dept. of Chemistry, Purdue University for experimental help.

**Supporting Information Available:** Experimental details and spectral data of all compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL802850W

1470 Org. Lett., Vol. 11, No. 7, 2009